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Abstract. A method for performing nested-grid calculations with a Large-Eddy Simulation (LES) code is described.
The grid consists of a coarse mesh and a fine mesh which overlaps the coarse in some region. A standard finite-
volume method is used on both meshes. By means of grid communication, the velocity and pressure at both meshes
are matched.

To check that large eddies which are already resolved on the coarse grid are not affected by the nesting
procedure, a simple two-dimensional mixing layer is simulated. Several simulations of this flow have been carried
out with a different number of grid points on the nested grid. It is found that, without much extra computational
effort, the grid-nesting improves the turbulent statistics with respect to the results found on the coarse mesh. This
improvement occurs first of all in the region where grid refinement is applied, but better results are also found on
the coarse mesh outside the grid-refinement region. Furthermore, it is shown that the large-scale structures in this
flow are not influenced by the boundary between the coarse and fine grid.
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1. Introduction

Numerical simulation is becoming an increasingly important tool to study turbulent flows.
It is used for instance to investigate fundamental aspects of turbulence, such as coherent
structures, but it can also be applied to generate data which can be used to formulate models,
e.g. closure hypotheses, for a given flow geometry. The most straightforward simulation
technique is Direct Numerical Simulation (DNS) in which all turbulent flow scales, i.e. from
the micro- to the macro-scales, are numerically resolved. However, this approach is limited
to low Reynolds numbers. As a result, it is not suited to compute, for instance, engineering
or atmospheric flows, which occur at large to very large Reynolds numbers. Therefore, an
alternative simulation technique has been developed, namely Large-Eddy Simulation (LES).
In this technique the micro-scales of turbulence are removed by means of a filtering procedure
and the remaining macro-scales are then numerically solved on a grid of which the size is
usually taken proportional to the filter length, see e.g. [1] for a review.

The drawback of LES is that the influence of the filtered micro-scales on the resolved
macro-scales cannot be neglected. In the filtered equations for the resolved motions this
subgrid influence appears as an additional stress term known as the subgrid term. As a
consequence, the solution of the LES equations requires a closure hypothesis which gives
a description of the subgrid stresses in terms of the known, resolved variables. The subgrid
stress is, however, a spatially intermittent and highly fluctuating quantity and its relationship
with local flow variables is poorly known. Fortunately, in many circumstances the effect of
the subgrid stresses on the large-scale resolved motions is negligible. This is in particular the
case when the energy of subgrid motions is small with respect to the total energy of the flow.
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In that case we could use a simple subgrid model, because, in view of large-scale dynamics,
its only purpose is to dissipate energy at a sufficient rate. Such a simple, but at the same time
satisfactory, subgrid closure is the so-called Smagorinsky model [2] which is still widely used.

On the other hand, there are cases where a simple subgrid model fails. The most well-know
example is turbulent flow near a wall. The reason is that, as the wall is approached, the tur-
bulence scales, in particular those normal to the wall, become smaller and, consequently, the
contribution of the subgrid scales to the total energy becomes larger. Various modifications
have been proposed to correct this problem. We may mention here the dynamic model origi-
nally proposed by Germano et al. [3]. In this model the constant in the Smagorinsky model is
adjusted as a function of the spatial coordinates resulting in the subgrid model turning itself
off in the neighbourhood of the wall where the flow becomes laminar-like. Another approach
is the use of backscatter [4] in which some of the subgrid energy is injected back into the
resolved scales by means of a stochastic procedure. However, neither of these modifications
is found to be completely satisfactory in all circumstances.

The most straightforward approach to solve the problem mentioned above would be to
decrease the filter length of the LES when the wall is approached. In this way we could keep
the subgrid energy always small in relation to the resolved energy. A first step toward such a
non-uniform filter length would seem to be the use of a non-uniform grid which decreases in
size in a direction normal to the wall. However, it appears that in this case the filter length still
remains determined by the large grid size of the interior flow. It seems that the non-uniform
grid results only in a better representation of the mean profiles as a function of the wall-normal
coordinate and not in a better resolution of the turbulence (e.g. Nieuwstadt et al. [5] ).

A real reduction of the filter length can only be obtained when the grid size is reduced
in all three coordinate directions. In other words, we need to apply grid refinement. Such a
procedure has been proposed by Sullivan et al. [6] for a LES of the atmospheric boundary
layer. They use a nested grid near the surface which is superposed on and at the same time
is collocated with the original coarse grid. Clearly, this is an attractive approach because it
allows us to introduce grid refinement at those positions in the flow where the effects of the
subgrid model may be critical. In this way, the influence of the subgrid model on the overall
results can be reduced.

To perform the computation on both a coarse and a fine grid requires a communication
procedure between both grids. An important requirement which such a procedure must satisfy
is that it should leave the large eddies which are already resolved on the coarse grid undisturbed.
It is the objective of this paper to verify this requirement for two grid-nesting schemes. In
the first the communication between both grids is carried out by interpolation, whereas in the
second method the procedure proposed by Sullivan et al. [6] is used. We consider a particular
flow problem for our test, namely the two-dimensional mixing layer which is known to
generate large-scale vortex structures. Computation of this mixing layer on both a coarse and
a mixed grid, i.e. the combination of a fine and a coarse grid, should demonstrate whether the
two communication procedures leave the large eddies undisturbed.

The lay-out of this article is as follows. In Section 2, the governing equations for LES
will be given and the numerical procedure to solve these equations will be discussed. Next,
in Section 3 the details of the grid-refinement procedure will be treated. Finally, in Section 4
the simulation of the mixing layer on which the grid-refinement procedure is tested will be
discussed.
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2. Large-eddy simulation model

2.1. GOVERNING EQUATIONS

In LES each flow variable � is decomposed in a large-scale component � and a subgrid scale
component �0 as � = �+ �0 where the large-scale component is obtained by the application
of a moving-filter operation. The resulting equations for the spatially filtered velocity, ui, and
pressure, p, then become:

ui;i = 0; (1)

@ui

@t
+ (uiuj);j = �

1
�
p;i + �ui;jj + �ij;j; (2)

where � is the density of the fluid. In this equation a new stress term appears, the so-called
subgrid stress �ij . It is defined as

�ij = �(uiuj � uiuj): (3)

We parametrize this subgrid stress here following the Smagorinsky model:

�ij = 2�tSij with �t = (cS�)
2
q

2S
2
ij; (4)

where Sij is the deformation-rate tensor of the resolved velocity field

Sij =
1
2

 
@ui

@xj
+
@uj

@xi

!
: (5)

In the equation for �t, the � is a representative grid spacing which is defined here as
� = (�x1�x2�x3)

1=3, where the �x1, �x2 and �x3 are the grid spacings in the three
coordinate directions. The constant cS is known as the Smagorinsky constant and it can be
interpreted as being proportional to the ratio of the filter length to the grid spacing. In general
a value � 0�1 : : : 0�2 is taken for cS which implies a filter length of approximately twice the
grid spacing.

2.2. COMPUTATIONAL METHOD

The equations given in the previous subsection are solved by the following numerical tech-
niques. The Equations (1)–(2) are discretized with a second-order finite-volume method on a
staggered grid. A second-order Adams–Bashforth [7] method is used for the time integration.
Keeping the Courant number fixed, we adjust the time step dynamically. Mass conservation
is preserved through a pressure-correction method [8]. This leads to the following system of
equations to be solved consecutively:

u�i = uni +4t (
3
2A(u

n
i )�

1
2A(u

n�1
i )); (6)

�Du�i = �4t DGpn+1; (7)

un+1
i = u�i �4t Gp

n+1: (8)
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Here, u% is the velocity at time nAt and pn the pressure. The operator A(ul)  represents
the discretized viscous and convective terms; D is the discrete divergence operator and G the
discrete gradient operator. The Poisson equation (7) needs to be solved at every time step by an
iterative or direct solver. Here, we have used a direct solver based on Fast-Fourier-Transform
techniques (e.g. [9, lo]).

3. Grid-nesting algorithm

Figure 1. A fine grid nested within a coarse grid
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Figure 2. Interpolation of the tangential velocity

components from the coarse grid to the fine grid.

The purpose of local grid refinement is to obtain a better resolution of turbulence in areas
which can be considered as critical in terms of the total flow problem. The starting point is a
numerical simulation of the whole flow field on a coarse uniform grid. In some parts of the
flow domain, which are considered to be critical, the coarse grid is locally overlaid with a fine
grid. The fine grid is also taken to be uniform. This grid structure is shown in Figure 1. The
coarse grid size is a multiple of the fine grid size, so that each coarse cell is a union of fine
cells. On both grids the standard staggered velocity representation as discussed above is used.

3.1. CO M M U N I C A T I O N F R O M T H E C O A R S E T O T H E F I N E G R I D

An important problem is to know how the interaction between the two grids should be
formulated and various methods can be devised for this. Here, we consider the interaction
imposed through conditions on the boundaries between the fine and the coarse grid. These
boundaries either coincide with a physical boundary or they are embedded in the interior
of the coarse grid. In the former case, the standard boundary conditions, used on a surface,
are applied both on the fine and coarse grid. For the latter case, i.e. the interior boundary,
Dirichlet conditions are applied: i.e. on the boundary of the fine grid velocity components are
prescribed. These boundary conditions need to be adapted every time step. They follow from
interpolation of the velocity computed on the coarse grid.

Let us specify this interpolation procedure in somewhat more detail. For simplicity we shall
consider interpolation in two-dimensions and for a grid refinement factor of two (generali-
sation  to three dimensions and to other grid refinement factors is straightforward). Boundary
conditions for the velocity components tangential to the interface are implemented by intro-
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duction of virtual points outside the area of the fine grid, cf. Figure 2. Next, a multi-linear
interpolation1 is computed according to

va = (3vA + vD)=4; vc = (3vB + vC)=4; vb = (va + vc)=2; (9)

with va, vb and vc as the velocities on the fine grid and vA,vB , vC and vD as those on the
coarse grid.

a

B A

c b

Figure 3. Interpolation of the normal velocity components from the coarse grid to the fine grid.

Following Thompson and Ferziger [11], we use for the normal velocity components a
slightly different procedure to ensure mass conservation. First, preliminary values, denoted
by primes, are computed by multilinear interpolation (Figure 3)

u0a = (3uA + uB)=4; u0b = (uA + 3uB)=4; (10)

with the same notation as used above. Next, a correction is applied to ensure that the sum of
the mass flux through the fine-grid cell faces of which the union is a coarse grid-cell face,
equals the original mass flux through this coarse-grid cell face. For the situation depicted in
Figure 3, this implies (ub + uc)=2 = uB . We achieve this by defining

ub =
2uB
u0b + u0c

u0b; uc =
2uB
u0b + u0c

u0c:

3.2. COMMUNICATION FROM THE FINE TO THE COARSE GRID

Not only do we have to take into account the influence from the coarse grid on the fine grid
by means of the boundary conditions, but we need also an update of the coarse-grid velocity
components by the results obtained on the fine grid. Two possible coupling methods between
the grids which we will consider are:

Method 1

In this method we apply interpolation of the results of the fine grid to the coarse grid. This
interpolation may take place at arbitrary time steps to be determined by the user. In our

1 It would appear that a second-order interpolation scheme is required in order not to destroy the accuracy of
the numerical solution on the fine grid. However, the subgrid-stress modeling introduces a first-order, local error
and, therefore, we concluded that a first-order interpolation would be sufficient. Indeed, we typically found no
visible influence of this local error on the results in our simulations (See results in Section 4).
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simulations we applied this interpolation at every time step, but we may get by with less
interaction. Interpolation could be applied after the predictor step (u�f ! u�c), or after the

correction step (un+1
f ! un+1

c ). Since the latter, which is also known as a so-called post-
insertion method, may violate the conservation of mass on the coarse grid, we prefer to
interpolate after the predictor step.

To illustrate the interpolation algorithm, a description of all steps is given in the Appendix A.

Method 2

In the paper of Sullivan et al. [6] another method of so-called two-way coupling between the
coarse and the fine grids is proposed. In their case communication from the fine to the coarse
grid is taken care of by modification of the subgrid terms in the coarse-grid equations. These
terms, which appear both in the coarse-grid momentum equations and in the right-hand side
of the Poisson equation for the pressure, are now formulated in terms of the subgrid model on
the fine grid together with an explicit contribution of the scales in between the large and small
grid. It turns out that this formulation is consistent with the filtering procedure introduced by
Germano et al. [3] in their dynamic model.

To illustrate this algorithm, a description of all steps is given in Appendix B.

4. The mixing layer

4.1. PROBLEM DESCRIPTION

The LES model including the grid-refinement technique described in the previous section
will be tested for the case of a horizontally homogeneous, two-dimensional mixing layer
which develops as a function of time. This flow is also known as a temporal mixing layer.
One might perhaps object that a two-dimensional flow will not lead to the turbulence that we
usually aim to simulate with LES. However, we have selected this case because of the fact
that, in a two-dimensional temporal mixing layer, the flow as a function of time organizes
itself in large-scale vortex structures. Our purpose is to check with this flow whether our grid-
refinement procedure leaves these large-scale vortex structures and their development, which
is already well resolved on the coarse grid, undisturbed. In our opinion, this should be checked
first before we can apply the grid-refinement technique with confidence to three-dimensional
turbulence in order to improve the resolution of small-scale turbulence2.

For the formulation of the temporal mixing-layer problem, we follow Lesieur et al. [12]
who have performed DNS of such a mixing layer at the high resolution of 256 � 256 grid
points, using a streamfunction-vorticity formulation with a hyperviscosity subgrid model.
Here, we consider a two-dimensional mixing layer in the x; y plane at y = 0�5 in a box
0 < x; y < 1. At the upper and lower boundaries, i.e. at y = 0 and y = 1 we apply free-slip

2 It should be stressed that in this article we primarily concentrate on the behaviour of the large resolved scales
under grid refinement and for this we have selected the two-dimensional mixing layer. The difference between the
two grid-communication methods discussed in Section 3.2 will appear in particular when the subgrid scales play
a more important role in the flow dynamics such as in the case of three-dimensional turbulence. Therefore, we
should be careful in interpreting the results obtained with these two grid-communication methods here in terms of
their performance in the three-dimensional case and for the latter we refer to [6].
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boundary conditions. In the x-direction we use periodic boundary conditions. At the initial
time, i.e. t = 0, the velocity field is given by:

U(y) = U1 tanh
�

2y � 1
�

�
; (11)

where � is chosen as:

� =
1

28
�

0�8892
16�

: (12)

In this case, the wave number of the fastest growing spatial mode �a is equal to 16�. On the
initial velocity field (11) we superpose a perturbation with components u and v, defined by
means of a stream function according to

u =
@ 

@y
; v = �

@ 

@x
: (13)

and, as a result, the perturbation is divergence-free. The perturbation stream function is given
by

 = 0�1U1 exp

"
�

�
y � 0�5
�

�2
#

cos(�x); (14)

in which the wave number is 2�=� with a wave length �. We have taken for the actual
perturbation the sum of two waves with wave lengths 1/4 and 1/10 in terms of the domain
length, respectively. The Reynolds number of this flow is defined as Re = U�=� where �
is the kinematic viscosity of the fluid. In all simulations Re was taken equal to 250. In the
following, the results shall be presented in terms of non-dimensionalized time, i.e. the time
scaled with �=U1.

4.2. SIMULATIONS

Six different simulations have been carried out for the flow geometry of the temporal mixing
layer discussed above. In each simulation we have changed the number of grid points and in
a number of cases we have used our grid-refinement procedure. In the cases 1 to 4, we have
used coupling method 1 and cases 5 and 6 have been calculated with coupling method 2. The
computational details of all cases are collected in Table 1.

Table 1. The different grids used in the simulations

a b c d e f

Ncoarse 240� 240 80� 80 80� 80 80� 80 80� 80 80� 80
y (fine) – – 3

8 < y < 5
8

3
8 < y < 5

8
3
8 < y < 5

8
3
8 < y < 5

8

Nfine – – 160� 40 240 � 60 160� 40 240� 60
Cs 0�1 0�1 0�1 0�1 0�1 0�1
Cpl. meth. – – 1 1 2 2
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Figure 4. The mean velocity profiles after 20 timescales (left). The profiles of the root mean square of the
streamwise velocity fluctuations after 20 timescales (right).

The first computation, denoted as case a, uses a grid consisting of 240� 240 grid points
with no grid refinement. This high-resolution computation is taken as a reference with which
the other computational data are to be compared. In the second case, denoted as case b, a
coarser grid of 80 � 80 has been used and again no grid refinement has been applied. This
case allows us to estimate the improvement of grid refinement on the computational results.
The next two computations, cases c and d, are both computed on the grid of 80 � 80 grid
points in combination with the grid-refinement procedure according to method 1 of Section
3.2. In computation c, the grid refinement was applied in the sub domain 0 < x < 1 and
0�375 < y < 0�625, i.e. around the velocity discontinuity. The refinement factor is 2 in both
directions. In computation d the grid refinement has been applied to the same sub domain, but
now with a refinement factor of 3 in both directions. The last two computations e and f use
the same number of grid points as c and d, but the difference lies in the grid-communication
method which is now method 2.

For most applications it is sufficient to consider statistical quantities, like mean flow profiles,
root mean square profiles and spectra. Therefore, we will restrict ourselves to a comparison
of these variables on the coarse and refined grid with the results obtained for high-resolution
case a.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-30 -20 -10 0 10 20 30

a
b
c
d

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9

a
b
c
d

Figure 5. The mean velocity profiles after 40 timescales (left). The profiles of the root mean square of the
streamwise velocity fluctuations after 40 timescales (right).
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Figure 6. The mean velocity profile after 60 timescales (left). The root mean square profiles of the streamwise
velocity after 60 timescales (right).

In Figure 4 (left) we have plotted the mean velocity profiles obtained from the four
simulations a–d after 20 timescales. In Figure 4 (right) similar results are shown, but now for
the root mean square (rms) of the velocity fluctuations after 20 timescales. All four simulations
give almost identical profiles for the mean velocity but some differences show up for the rms
values. The fact that the numerical resolution of simulation b is lower than for case a is clearly
reflected in the smaller magnitude of the rms for case b. However, the simulations c and d,
which use grid refinement, give rms values comparable with the results of simulation a on the
fine grid.

In Figures 5 and 6 (left and right) we have plotted the mean and rms profiles for the
cases a–d after 40 and 60 timescales, respectively. All four simulations give again identical
mean flow profiles after 40 timescales, and there is reasonable agreement for the rms profiles.
After 60 timescales some differences become apparent in the mean profiles. However, it
is clear that in comparison to the high resolution case a, the nested-grid simulations, i.e.
simulations c and d show better agreement than the non-nested coarse simulation b. Figure
6 (right), which illustrates the rms-profiles after 60 timescales, shows very clearly that the
nested-grid simulations c and d are superior to the coarse-grid simulation b. The interesting
fact, which should be noted here, is that the results improve not only in the region where the
grid refinement has been applied, but also in the regions where the grid has remained coarse.
Furthermore, it is also clear that simulation d gives better results than simulation c, i.e. an
increasing value of the grid-refinement factor or a increasing number of gridpoints on the fine
patch, improves the results. Again, this improvement is found both within and outside the
region of grid refinement.

The results for the cases c–d above have been calculated by coupling method 1 of Section
3.2, i.e. the method with interpolation of the fine grid results to the coarse grid. In Section
3.2 we have also presented another coupling method, indicated as method 2. In this second
method, the fine grid solution is used to calculate the subgrid stresses on the coarse grid in
the nested region. The use of a subgrid model on the coarse grid in the overlap region is thus
avoided. The performance of method 2 is considered in computations e and f which have the
same grid resolution as cases c and d, respectively.

In Figure 7 we show the root-mean-square values of the streamwise velocity at t = 40
and t = 60 for cases e and f . For comparison, we have again plotted in this figure the
fine-grid simulation (a). The agreement between the nested-grid simulations and the fine-grid
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simulation by means of coupling method 2 is for case f comparable with the results obtained
with coupling method 1 (see Figures 5 and 6). For case e the results with method 2 seem to
be somewhat poorer, which is due to the computation in method 2 of the scales in between
the large and small grid. However, before making any conclusion regarding the performance
of the two coupling methods, we should remind the remarks made in footnote 2.
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Figure 7. The root mean square profiles of the streamwise velocity after 40 and 60 timescales. Calculated with
coupling method 2

4.3. VORTICITY

Another interesting quantity for analysis is the vorticity. In two dimensions only one compo-
nent of the vorticity vector differs from zero. In our case this is !z defined as

!z =
@(U + u)

@y
�
@v

@x
: (15)

In each of the Figures 8, 9 and 10 we show contour plots of the vorticity for the simulations
a–d after 20, 40 and 60 timescales, respectively. The data for the cases c and d at 20 timescales
show qualitatively the same behaviour as simulation a given in the same figure. On the other
hand, the vortex pattern for the coarse-grid is clearly different. In fact, the pairing of the
vortices has already started in this coarse-grid case, caused by a numerical resolution that is
too low which leads to numerical damping that is too high. After 40 timescales the agreement
between simulations a, c and d is still good, while simulation b shows a totally different
behaviour. After 60 timescales only an acceptable agreement between simulations a and d
remains.

4.4. SPECTRA

A more detailed comparison between the results obtained on the different grids can be made
with help of the energy spectrum. Since the mixing layer is periodic in the x-direction, we
can calculate one-dimensional spectra along this axis. The one-dimensional energy spectrum
averaged over the y-direction then reads, (e.g. Lesieur et al. [12] Equation 2.5):

E(k) =

Z 1

0
jû(k; y)j2 dy; (16)
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Figure 8. Contour lines of the vorticity after 20 timescales

where

û(k; y) =
1
N

NX
k=0

u(x; y) e�ikx; (17)

is the Fourier Transformation of the velocity in the x-direction.
In Figure 11 we show these energy spectra for the cases a–d after 40 timescales. The

spectrum for the the fine grid simulation a given by the solid line, should be again taken as
a reference. The spectrum for the coarse grid, case b, clearly fails for the smallest scales, i.e.
the highest wave numbers. The two cases, with grid-refinement, show much better results in
comparison with a. Against our expectation the agreement is best for case c which uses a
lower grid-refinement factor than case d. The interpolations from the fine to the coarse patch
probably introduce some noise which increases with the grid-refinement factor. In this figure
we have also plotted a line with a slope of�4, which is the behaviour of the spectrum observed
by Lesieur et al. [12]. We see that all simulations agree more or less with such k�4 behaviour.

5. Concluding remarks

It has been argued that Large-Eddy Simulation becomes less reliable near physical boundaries
like walls, where the length scales of the large eddies are reduced and a finer grid is needed
to resolve these eddies. In this paper we have proposed a method which can be used to refine
a grid locally in all three directions, by means of a so-called grid-nesting method. In this
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Figure 9. Contour lines of the vorticity after 40 timescales

method, a coarse grid and one or more fine grids are used which overlap the coarse grid in
some part of the flow domain.

In the present study simulations for a two-dimensional temporal mixing layer have been
carried out with varying resolutions on the fine-mesh. The results from this grid-refinement
procedure have been compared with the results of a high-resolution simulation carried out on
the same flow domain. This particular flow has been selected because it allows us to study
whether the grid-refinement procedure influences large-scale structures in the flow.

From the results we can conclude that with respect to statistics such as the mean velocity
and the rms values, the nested grid simulations are clearly superior to the results obtained with
a simulation on a coarse grid in the whole flow domain. Contour-line plots of the vorticity
show no visible influence of the boundary between the coarse and fine grids. Also, the one-
dimensional spectra confirm that the results of the refined-grid computations perform better
in comparison with the coarse-grid computations.

Therefore, we venture to conclude that the grid-nesting procedure seems to meet its objec-
tive, namely a local increase of resolution. However, we again stress that our comparison here
has been carried out for a two-dimensional flow. It has still to be checked whether our conclu-
sion also applies to the three-dimensional case. In this case we expect that the communication
from the fine to the coarse grid will play a more important role than in the present case. This
will be the subject of further study.
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Figure 10. Contour lines of the vorticity after 60 timescales
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Figure 11. The one-dimensional energy spectra as defined by Equation (17)
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Appendix A: Grid-nesting algorithm (1)

1. Initialize u0
c and u0

f .
2. For n = 1, nstep do

(a) Calculate the turbulent viscosity �t on the coarse grid.
(b) Apply boundary conditions on the coarse grid for the velocities and the (turbulent)

viscosity.
(c) Apply boundary conditions on the fine grid velocities unf by interpolating unc to the

bounding box.
(d) u�c = unc +4t(

3
2A(u

n
c )�

1
2A(u

n�1
c )).

(e) Calculate the turbulent viscosity �t on the fine grid.
(f) u�f = unf +4t(

3
2A(u

n
f )�

1
2A(u

n�1
f )).

(g) Interpolate u�f to the coarse grid, ie. u�c = u�f in the overlapping region.
(h) Determine boundary conditions for u�c .
(i) Solve �Du�c = �4tDGpn+1

c .
(j) un+1

c = u�c �4tGp
n+1
c .

(k) Determine boundary conditions on the fine grid for u�f by interpolating un+1
c on the

bounding box.
(l) Solve �Du�f = �4tDGpn+1

f .

(m) un+1
f = u�f �4tGp

n+1
f .

Appendix B: Grid-nesting algorithm (2)

1. Initialize u0
c and u0

f .
2. For n = 1, nstep do

(a) Calculate the subgrid stress uiuj � ui uj , using the subgrid model in non-nested
region and the fine grid solution in the nested region.

(b) Apply boundary conditions on the coarse grid for the velocities and subgrid stress.
(c) Apply boundary conditions on the fine grid velocities unf by interpolating unc to the

bounding box.
(d) u�c = unc +4t(

3
2A(u

n
c )�

1
2A(u

n�1
c )).

(e) Calculate the turbulent viscosity �t on the fine grid.
(f) u�f = unf +4t(

3
2A(u

n
f )�

1
2A(u

n�1
f )).

(g) Solve �Du�c = �4tDGpn+1
c .

(h) un+1
c = u�c �4tGp

n+1
c .

(i) Determine boundary conditions on the fine grid for u�f by interpolating un+1
c on the

bounding box.
(j) Solve �Du�f = �4tDGpn+1

f .

(k) un+1
f = u�f �4tGp

n+1
f .
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